首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7352篇
  免费   857篇
  国内免费   658篇
化学   2621篇
晶体学   149篇
力学   1054篇
综合类   81篇
数学   1280篇
物理学   3682篇
  2024年   10篇
  2023年   99篇
  2022年   156篇
  2021年   192篇
  2020年   221篇
  2019年   115篇
  2018年   141篇
  2017年   242篇
  2016年   298篇
  2015年   199篇
  2014年   437篇
  2013年   446篇
  2012年   404篇
  2011年   434篇
  2010年   358篇
  2009年   457篇
  2008年   472篇
  2007年   487篇
  2006年   403篇
  2005年   438篇
  2004年   378篇
  2003年   289篇
  2002年   282篇
  2001年   233篇
  2000年   192篇
  1999年   186篇
  1998年   196篇
  1997年   158篇
  1996年   141篇
  1995年   124篇
  1994年   89篇
  1993年   83篇
  1992年   91篇
  1991年   47篇
  1990年   43篇
  1989年   35篇
  1988年   41篇
  1987年   37篇
  1986年   29篇
  1985年   20篇
  1984年   28篇
  1983年   17篇
  1982年   25篇
  1981年   17篇
  1980年   7篇
  1979年   23篇
  1978年   16篇
  1977年   9篇
  1976年   9篇
  1973年   4篇
排序方式: 共有8867条查询结果,搜索用时 15 毫秒
51.
唐少杰  向宇  石梓玉 《应用声学》2023,42(6):1235-1243
入射声波激励下非均匀流体介质内部散射声场的重建方法对超声层析成像具有重要意义。以往采用矩量法求解,但该方法全域离散形成的复数满秩矩阵规模随着分辨率与计算精度的提高而急剧增大,对算力具有很高的要求,一定程度上限制了其在实际中的应用。为克服上述缺陷,本文以逐层离散、逐层计算为核心思想,以声散射基本公式与近场声全息理论为基础,推导出逐层计算非均匀流体介质内部散射声场的理论公式并给出对应的几何离散模型。为验证该方法的可行性,以矩量法为参照,对同样的介质模型进行介质内部声场重构仿真。结果表明,逐层算法不仅可以有效地重建非均匀流体介质内部散射声场,且大幅度减小了求解规模。  相似文献   
52.
Ultrasound has been proven to enhance the mass transfer process and impact the fabrication of anodic aluminum oxide (AAO). However, the different effects of ultrasound propagating in different media make the specific target and process of ultrasound in AAO remain unclear, and the effects of ultrasound on AAO reported in previous studies are contradictory. These uncertainties have greatly limited the application of ultrasonic-assisted anodization (UAA) in practice. In this study, the bubble desorption and mass transfer enhancement effects were decoupled based on an anodizing system with focused ultrasound, such that the dual effects of ultrasound on different targets were distinguished. The results showed that ultrasound has the dual effects on AAO fabrication. Specifically, ultrasound focused on the anode has a nanopore-expansion effect on AAO, leading to a 12.24 % improvement in fabrication efficiency. This was attributed to the promotion of interfacial ion migration through ultrasonic-induced high-frequency vibrational bubble desorption. However, AAO nanopores were observed to shrink when ultrasound was focused on the electrolyte, accompanied by a 25.85 % reduction in fabrication efficiency. The effects of ultrasound on mass transfer through jet cavitation appeared to be the reason for this phenomenon. This study resolved the paradoxical phenomena of UAA in previous studies and is expected to guide AAO application in electrochemistry and surface treatments.  相似文献   
53.
The research on developing a purification technology for Cr(Ⅵ) polluted water with high efficiency and the low energy consumption is crucial for achieving several Sustainable Development Goals (SDGs). In order to achieve these goals, Fe3O4@SiO2-APTMS nanocomposites were prepared by Fe3O4 nanoparticles modified with silica and 3-aminopropyltrimethoxysilane in the presence of ultrasonic irradiation. The nanocomposites were characterized by TEM, FT-IR, VSM, TGA, BET, XRD, XPS and these analytic results proved that the nanocomposites were successfully prepared. The influential factors of Fe3O4@SiO2-APTMS on Cr(Ⅵ) adsorption have been explored and better experimental conditions have been obtained. The adsorption isotherm conformed to the Freundlich model. Pseudo-second-order kinetic model provided a better correlation for the experimental data compared to other kinetic models. Thermodynamic parameters for adsorption indicated that the adsorption of Cr(Ⅵ) was a spontaneous process. It was speculated that the adsorption mechanism of this adsorbent includes redox, electrostatic adsorption and physical adsorption. In summary, the Fe3O4@SiO2-APTMS nanocomposites were of great significance to human health and the remediation of heavy ion pollution, contributing to achievement of the Sustainable Development Goals (SDGs), including SDG-3, SDG-6.  相似文献   
54.
Ultrasonic-assisted metal droplet deposition (UAMDD) is currently considered a promising technology in droplet-based 3D printing due to its capability to change the wetting and spreading behaviors at the droplet-substrate interface. However, the involved contact dynamics during impacting droplet deposition, particularly the complex physical interaction and metallurgical reaction of induced wetting-spreading-solidification by the external energy, remain unclear to date, which hinders the quantitative prediction and regulation of the microstructures and bonding property of the UAMDD bumps. Here, the wettability of the impacting metal droplet ejected by a piezoelectric micro-jet device (PMJD) on non-wetting and wetting ultrasonic vibration substrates is studied, and the corresponding spreading diameter, contact angle, and bonding strength are also discussed. For the non-wetting substrate, the wettability of the droplet can be significantly increased due to the extrusion of the vibration substrate and the momentum transfer layer at the droplet-substrate interface. And the wettability of the droplet on a wetting substrate is increased at a lower vibration amplitude, which is driven by the momentum transfer layer and the capillary waves at the liquid–vapor interface. Moreover, the effects of the ultrasonic amplitude on the droplet spreading are studied under the resonant frequency of 18.2–18.4 kHz. Compared to deposit droplets on a static substrate, such UAMDD has 31% and 2.1% increments in the spreading diameters for the non-wetting and wetting systems, and the corresponding adhesion tangential forces are increased by 3.85 and 5.59 times.  相似文献   
55.
The translation behaviors of oscillating bubbles are closely related to the polymerizations and dispersions between them, which are crucial for the ultrasonic cavitation effect. In this study, six types of translational motion of bubbles with a wide range of sizes (2–100 μm) in the R01-R02 plane are investigated. Our results demonstrate that in addition (to the 2nd order harmonic), the 1/2 order subharmonic can change the bubble pairs from the three states of the attraction, stable after attraction, and repulsion to that of the repulsion, coalescence, and attraction, respectively. Furthermore, within the range of the main resonance radius and the 1/2 order subharmonic resonance radius, the chaotic bubble pairs with alternating attractive and repulsive forces appear in the region between the coalescence pairs and stable pairs after attraction. Finally, the corresponding physical mechanisms of the chaotic translational motions are also revealed.  相似文献   
56.
Ultrasonic-assisted treatment is an eco-friendly and cost-effective emulsification method, and the acoustic cavitation effect produced by ultrasonic equipment is conducive to the formation of stable emulsion. However, its effect on the underlying stability of low-molecular-weight oyster peptides (LOPs) functional-nutrition W1/O/W2 double emulsion has not been reported. The effects of different ultrasonic power (50, 75, 100, 125, and 150 W) on the stability of double emulsions and the ability to mask the fishy odor of LOPs were investigated. Low ultrasonic power (50 W and 75 W) treatment failed to form a well-stabilized double emulsion, and excessive ultrasound treatment (150 W) destroyed its structure. At an ultrasonic power of 125 W, smaller particle-sized double emulsion was formed with more uniform distribution, more whiteness, and a lower viscosity coefficient. Meanwhile, the cavitation effect generated by 125 W ultrasonic power improved storage, and oxidative stabilities, emulsifying properties of double emulsion by reducing the droplet size and improved sensorial acceptability by masking the undesirable flavor of LOPs. The structure of the double emulsion was further confirmed by optical microscopy and confocal laser scanning microscopy. The ultrasonic-assisted treatment is of potential value for the industrial application of double emulsion in functional-nutrition foods.  相似文献   
57.
Bipolar electrode-based (BPE-based) electrochromic devices have garnered increasing attention in the past decade. These BPE-based electrochromic devices have been used for analytical health monitoring, point-of-care (POC) diagnostics, and chemical sensing. In this review, we highlight recent progress made regarding BPE-based electrochromic devices constructed for these analytical applications. Various, available electrochromic materials are summarized in the first section, after which the different device types (e. g., paper-based and self-powered) are discussed. Biological- and chemical-based analytical demonstrations of these devices are then reviewed. Finally, we conclude this review with a perspective on the future developments of BPE-based electrochromic devices in analytical applications.  相似文献   
58.
Electrochemical glucose sensors have garnered considerable attention because of their attractive prospect in point-of-care testing (POCT). In this review, we firstly introduce the principles and challenges of electrochemical glucose sensors. Subsequently, we present an overview of the application of electrochemical glucose sensors and discuss their advantages and drawbacks. Wearable and implantable devices based on diverse target biofluid and platforms provide a considerable prospect of accurate and continuous monitoring. Thus, we believe that the future development direction of electrochemical glucose sensors is non-invasive, wearable devices and implantable devices with minimally invasive for continuous glucose monitoring in real time.  相似文献   
59.
本研究探讨了超声内镜联合CT门静脉成像技术对肝硬化食管胃静脉曲张(GOV)程度及治疗效果的评价价值。选取72例肝硬化GOV患者为研究对象,根据食管静脉曲张套扎术(EVL)治疗效果分为良好组与不良组。结果发现,不良组总横断面表面积、胃左静脉、门静脉、脾静脉、肠系膜上静脉直径及门静脉长度均大于良好组,曲张静脉壁厚度小于良好组(P<0.05);总横断面表面积、胃左静脉、门静脉、脾静脉、肠系膜上静脉直径及门静脉长度与肝功能Child-Pugh分级、静脉曲张程度呈正相关,曲张静脉壁厚度与肝功能Child-Pugh分级、静脉曲张程度呈负相关(P<0.05);总横断面表面积、曲张静脉壁厚度/胃左静脉、门静脉、脾静脉、肠系膜上静脉直径及门静脉长度均为肝硬化GOV患者治疗效果的影响因素(P<0.05);超声内镜、CT门静脉成像参数联合预测肝硬化GOV患者治疗效果的AUC为0.857。可见,超声内镜、CT门静脉成像参数与肝硬化GOV程度、肝功能分级及EVL治疗效果密切相关,可为临床预测EVL治疗效果提供一定参考。  相似文献   
60.
In this study, ultrasound-assisted extraction of polyphenols from C. cicadae was optimized by response surface methodology (RSM). The optimized conditions were determined as extraction time of 39 min, liquid-to-solid ratio of 1:29 g/mL, extraction temperature of 69 °C and ethanol concentration of 55% with a yield of 21.9 mg gallic acid equivalent/g dry weight. Four resins were used for polyphenol purification. D101 resin had the highest ratio of adsorption and was further applied in polyphenol purification test. A total of 19 different phenolic compounds were identified by LC-MS, including 12 phenolic acids and 7 organic acids. In addition, C. cicadae polyphenols displayed higher antioxidant activity in vitro and anti-aging activity of C. elegans in vivo. Lastly, C. cicadae polyphenols showed the potential to protect DNA from oxidative damage. Overall, our results suggest that polyphenols from C. cicadae may be considered as novel sources of anti-oxidation, anti-aging and recommended as reagents to protect DNA from oxidative damage in food and pharmaceutical industries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号